

Strategies and operator tools for grid restoration with massive renewable energy sources

Cluster

Resilience

opics

supply security, restoration strategies, control center tools, RES utilisation, smart ancillary service

- T Modelling strategy for artificial LV- and MV-grid
- Residual load models for restoration process studies
- T Supporting tools for system operators for grid restoration in grids with a high share of RES
- M Specification and implementation guidelines for restoration tools
- M Strategies for future grid restoration
- A Overview on grid restoration challenges considering high shares of renewables

Ein Unternehmen der Kelag **Partners for Further Development**

- Transmission system operators - Distribution system operators
- Control center manufacturers

FIWARE for Smart Energy Platform

Cluster

Grid Management

Topics

smart grids, automation, smart energy, cloud platform

- Design and implementation of open source automation services for MVDC networks
- T Platform with distributed architecture and semantics for energy efficiency, performance and user-based adaptation of energy systems
- T District Heating Energy Management (CESO)
- T ERO app for residents' energy usage
- M Innovative SOA platform as open source for rapid implementation of IoT solutions and newly built apps
- M Test sites for complex testing of platforms
- A Use case evaluation with standards like SAREF and other ontologies
- Methods for engaging customers to test flexibility
- A Supporting new business models for e.g. customer involvement

www.fismep.de



- Open source technology providers
- Distribution system operators
- RDI projects
- Developers of energy management systems
- Energy providers
- Municipalities
- Housing associations

Large-Scale Smart Grid Application Roll-Out

Cluster

Grid Management

Topics

resilience, smart grid applications, security, software deployment

- T Knowledge-based deployment process for smart grid applications
- Method for identification of security and safety critical issues
- T Resilient optimal rollout schedules through rollout analysis and validation
- T Evidential networks for the identification of root causes of rollout failures
- M Software maintenance for field devices as a service
- A Guidelines and best practices for seamless, safe and secure application deployment for grid and customer
- A Templates for communication and workshops with stakeholders

www.largo-project.eu

- Utility operators
- Energy management operators
- System integrators
- Scientific community
- Communication/ICT operators

From micro to Mega-GRID: Interactions of micro-grids in active distribution networks

Cluste

Local Energy Communities and Microgrids

Topics

micro-grids, interface, storage, demand response, distribution system operators, aggregators, renewable energy sources

- Optimization tool for energy scheduling of multiple grid-connected micro-grids
- T ICT interfaces for physical and commercial micro-grids validated
- T Algorithms to control and exchange information to enable load sharing among micro-grids
- M Demonstrated, coordinated optimal operation of two battery energy storage-based MG-EMS
- M Assessment of the impact of market design aspects on the overall market efficiency
- A Procurement strategies and quantification tools for flexibility for network issues

www.m2m-grid.eu

- DSOs facing capacity issues
- Developers of software for the management (of DSOs and EMS) of micro-grids
- Testbed for local energy communities
- Designers of products and services for local grids
- Research community around incentives for loss reduction and optimal operation
- Aggregators, planners and operators of local microgrids

Smart Meter Data Analytics for Enhanced Energy Efficiency in the Residential Sector

Cluster

Demand Response and Consumer Activation

Topics

data analytics, smart meter, machine learning, forecasting

Results Technology Market Adoption

- Machine learning prediction methods for household efficiency characteristics and consumer behaviour
 Algorithms to identify electricity base load of
- households

 Targeting tool to identify systemats likely to switch to
- M Targeting tool to identify customers likely to switch to an eco-tariff
- M Prospecting tool to identify customers willing to invest in sustainable energy systems for generation and storage
- A Customer segments with interest to adopt sustainable energy products
- A Design principles for prediction systems to individualize offers and consultancies for end-customers

Runtime

2017_2020

4 —— 6

www.t1p.de/wnnx

- Energy utilities
- Electricity retailers
- Vendors of renewable energy systems like heat pumps or photovoltaic installation
- Research communities interested in energy feedback and dissemination of sustainable products
- Data analytics/artificial intelligence vendors

New Energy Business Models in the Distribution Grid

Cluster

Demand Response and Consumer Activation

business models, participation, prosumer, consumer, peerto-peer market, blockchain

Results Technology Market Adoption

- Python package for short-term forecasting tool
- T Simulation environment with grid simulation tools for agent-based modelling of interaction between endusers and grid
- T Ethereum smart contracts for energy markets
- M Mechanisms for the right definition of the electricity market price
- M Criteria for the evaluation of the economic profitability of energy communities
- M Design for a mutual win-win market, with a benefit and cost pooling system
- A Consumer/prosumer requirements for different business models and market designs
- A User-centered approaches enhancing social acceptance and user collaboration

Runtime 2017-2020

NGENIC

- Local municipalities in cooperation with their citizens
- Communities of pro- and consumers
- Distribution grid operators and related business administrators interested in business models for distributed energy resource (DER) integration
- Researchers interested in user-centered design of selfconsumption communities
- Researchers interested in acceptance and gamification concepts for DER management

Efficient Demand and Supply Matching by Incentivizing End-Users in Buildings

Cluster

Demand Response and Consumer Activation

Topics

smart grids, flexible demand-response, user acceptability, control systems, intelligent buildings, living labs

Results Technology Market Adoption

- User-proof building energy management systems
- Scalable, automated ICT platform for supply-demand matching
- Automated control designs based on algorithms for innovative, integrated future demand-supply management
- M Models for local energy markets
- M Management schemes for energy savings
- M Analysis of key incentives for promoting demand-supply matching
- A Integration of social aspects in models
- A User control preferences
 - Motive-based incentives and interventions

Runtime

2017_2020

TRI

2 — 7

- Network operators
- Distribution and micro-grid operators
- Developers of energy management systems
- Energy service companies
- Energy companies aiming to provide energy feedback and automated control solutions
- Owners and managers of buildings
- (Local) governments and policy makers

Smart **Community Markets**

Demand Response and Consumer Activation

local markets, end-user engagement, digitalization, business models

- T ICT platform for a decentralized, local energy market with neighbourhood battery as market center supported by software agents
- System for providing flexibility to TSOs based on aggregating residential offers and smart charging
- Monitoring, forecast and optimization tools for the provision of flexibility
- M Validated business model for stacked flexibility services for the frequency market
- M Flexibility services for households
- Approaches for negotiating with local authorities
- Guidelines for local market designs including best practice for implementation

- Technology suppliers for battery storage, ICT and hybrid technologies
- DSOs and TSOs of distributed grids with high renewables share and frequency market
- Building owners aiming to improve the building environment
- Research and development community of flexibility market, smart energy and EVs
- Experts with AI technology in energy fields

Energy Management Building Set

Demand Response and Consumer Activation

demand response, aggregator, energy cooperatives

Results Technology Market Adoption

- ICT architecture for an heterogeneous multi-vendor system
- Energy monitoring and controlling architecture
- Forecasting tool to optimize the provision of thermal and electric energy
- T Automated control application for local optimization based on different data sets (price, weather, consumption)
- M Strategies for optimizing KWKG benefits
- M Sensitivity analysis for CO, pricing, e.g.: Energy Sources Act
- A Feedback from EMBS prototype installation at partner side
- A Feedback from EMBS backend installation (security, firewall, backup)

Runtime 2017-2020

TRL 5 — 7

www.srfg.at/embs

- Model developers
- Modelers of design tools
- Integration architectsEnergy communities
- Lifergy Communitie
- Energy contractors
- Housing associations
- Power system integrators
- Local energy communities

